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1. SPIDER

The Segmented Planar Imaging Detector for Electro-Optical (EO) Reconnaissance (SPIDER) [1, 2]
aims to be a smaller, lighter, cheaper and more power-efficient alternative to state-of-the-art space
telescopes.

The interferometer measures 4440 visibilities (Fourier coefficients) given by

f̂ (ξ) =
∫∞
−∞

∫∞
−∞ f (χ) e−i 2πχ·ξdχ, (1)

where Fourier coefficients f̂ measured at non-uniformly distributed coordinates ξ = (u, v) are calculated by
the continuous Fourier transform of the signal f measured at spatial coordinates χ.
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Figure: Arrangement of the lenslets of the SPIDER instrument (left) and the resulting Fourier sampling (right).

2. Interferometric Imaging Problem

The interferometric imaging problem can be concisely described as

y = Φx + n, (2)

I Non-uniformly distributed Fourier measurements, y ∈ CK

I Measurement operator, Φ : RN → CK

I Image, x ∈ RN

I Measurement noise, n ∈ CK

The measurement operator is modelled using a non-uniform fast Fourier Transform (NUFFT) [3]:

Φ = GFZD, (3)

I G : Cα2N → CM , Degridding operator
I F : Cα2N → Cα2N , Fast Fourier Transform
I Z : RN → Rα2N , Zero-padding
I D : RN → RN , Correction operator (corrects for effects induced by gridding)

Traditional reconstruction approaches use iterative solvers to find

x? = arg min
x∈X

‖Φx − y‖2`2 + λ‖Ψ
†x‖`1, (4)

I L = ‖Φx − y ||2`2, data fidelity term

I S = ‖Ψ†x‖`1, sparsity prior, with Ψ typically a dictionary of wavelet bases

Traditional approaches are
I Computationally expensive, because they evaluate the measurement operator every iteration
I Limited by the prior information captured in the handcrafted prior (S)

3. Learned Interferometric Imaging [5]

To reduce computational cost and get increased reconstruction quality through data-driven priors, we use
two learned imaging approaches:

Learned post-processing
I x? = Φ

†
θy = ΛθΦ

†y ,
with Λθ a learned correction operator

I Using a U-Net denoiser [6]
I Computationally efficient since it only evaluates the measurement operator once
I Limited performance dependent on the amount of information captured by the pseudo-inverse

Unrolled Iterative
I Mimic traditional iterative solvers
I Train a few unrolled iterations of an iterative optimization algorithm
I Computationally less expensive than iterative solvers as it typically needs fewer (unrolled) iterations
I Better reconstruction quality through data-driven priors and leveraging the measurement operator in the

reconstruction process

Our unrolled iterative approach uses a Gradient U-Net (GU-net) which is a modified U-Net where at each
resolution scale we add information captured by the measurement operator. For this we need sub-scale
measurement operators Φi : RNi → CKi , that:
I Are applied at a reduced image scale (through down-sampling in the U-Net)
I Work on a restricted Fourier space through applying a low-pass filter to the Fourier measurements
I Are computationally inexpensive since they work on a reduced image and Fourier space

Using these we can calculate the update based on measurement information added at each scale i :

x̃ i = Λi ,θ(x i , ∇xiL(Φix i , y i),∇f
xi
L(Φix i , y i),Φ∗i yi). (5)

I x i , the first channel at scale i
I ∇xiL(Φix i , y i), the gradient of the data-fidelity term
I ∇f

xi
L(Φix i , y i), the filtered gradient of the data-fidelity term

I Φ∗i yi , the scale-restricted dirty reconstruction
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4. Experiment

Simulating measurements from 256× 256 images using the NUFFT
with 30dB ISNR Gaussian noise. Using the simulated measurements
we perform two experiments

1: Test performance on large dataset of natural images
I images from the COCO dataset [8] (2000 train, 1000 test)
I Train for 200 epochs on the ADAM optimizer, a learning rate of

0.001, and a batch size of 5

2: Test performance on small, domain-specific datasets
Using transfer learning from the models trained on natural images to
repurpose the models to the following two datasets (300 train, 150 test):
I Galaxy simulations from IllustrisTNG simulations [9]
I Satellite images from Deep Globe satellite challenge [10]
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5. Results
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Figure: Reconstructions and the computation time, number of (full-scale) measurement operator evaluations (m ops), and peak signal-to-noise ratio (PSNR) of the
reconstructions for the COCO (top), IllustrisTNG (middle), and Deep Globe datasets.
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