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1. SPIDER
The Segmented Planar Imaging Detector for Electro-Optical (EO) Reconnaissance (SPIDER) [1, 2] is a
concept for an alternative EO imager that is lighter, smaller, cheaper and more power-efficient than
state-of-the-art space telescopes. It is an optical interferometer that measures a total of 4440 visibilities
(Fourier measurements)

V(u, v) =
∫∞
−∞

∫∞
−∞ I(l ,m)e−2πi(lu+mv)dldm, (1)

where the visibility V measured at Fourier coordinate (u, v) is calculated using the sky-brightness I(l ,m) at
coordinates (l ,m).
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Figure: Arrangement of the lenslets of the SPIDER instrument (left) and the resulting Fourier sampling (right).

2. Interferometric Imaging Problem
The interferometric imaging problem can be concisely described as

y = Φx + n, (2)

with Fourier measurements y ∈ CK , image x ∈ RN , measurement noise n ∈ CK , and measurement
operator Φ : RN → CK , which is a Fourier transform mapping from an image with N pixels to K
non-uniform Fourier measurements.
For our particular implementation we have K = 4440 non-uniform measurements, N = 256× 256 pixels,
and the measurement operator is modelled using a non-uniform fast Fourier transform (NUFFT) [3].

We can find an approximation to x by solving the minimization problem

x∗ = arg min
x∈X

||Φx − y ||2`2 + λ||Ψ
†x ||`1, (3)

with λ the regularization parameter and Ψ a dictionary of bases in which the true signal is naturally sparse.
E.g. Pratley et al. 2018 [4] use convex optimization algorithms with a dictionary of wavelet bases to
reconstruct images in radio interferometry.

These reconstruction techniques are limited by the information captured in handcrafted priors and are
computationally expensive because they evaluate the measurement operator every iteration.

3. Learned Interferometric Imaging [5]
We leverage learned imaging techniques to construct models with data-driven priors and
lower computational cost by evaluating the measurement operator sparingly.

Learned postprocessing methods learn a network to correct for artefacts introduced by applying the
pseudoinverse of the measurement operator to the measurements

x̂ = Φ†θy = ΛθΦ
†y , (4)

with Λθ the learned denoising network, and Φ† the pseudoinverse of the measurement operator. We use a
U-Net [6] architecture for our learned postprocessing network.

Unrolled iterative approaches combine learned networks with information captured by the measurement
operator, mimicking traditional solving approaches. They learn data-driven priors and need less iterations
(and therefore computation) to converge to a solution.

To apply the measurement operator at different resolution scales in the network, we define
sub-scale measurement operators, Φi : RNi → CKi , working on a reduced image resolution Ni 6 N, and a
restricted Fourier measurement space, Ki 6 K , by applying low-pass filters to the Fourier coefficients (cf.
[7]).

We integrate measurement information on all scales in the U-Net structure by including a (filtered) gradient
of the data fidelity functional, as well as a restricted reconstruction using the adjoint of the (sub-scale)
measurement operator

x̃ i = Λi ,θ(x i , ∇xiL(Φix i , y i),∇f
xi
L(Φix i , y i),Φ∗i yi). (5)
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Figure: GU-Net architecture

4. Experiment
Simulated measurements are generated following Equation 2, adding Gaussian measurment noise with an
input-signal-to-noise ratio (ISNR) of 30dB

σ =
||Φx ||`2√

K
· 10

−ISNR
20 . (6)

The U-Net and GU-Net are trained using 2000, 256× 256 natural images from the COCO dataset [8].

Networks are first trained for 200 epochs on the ADAM optimizer, a learning rate of 0.001, and a batch size
of 5.

Using transfer learning, we repurpose the network to reconstruct images in domains with lower availability
of data. We train the networks for 100 epochs on 300 images and evaluate on 150 images from the
datasets:

– Galaxy simulations from IllustrisTNG simulations [9]
– Satellite images from Deep Globe satellite challenge [10]
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5. Results
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Figure: Reconstructions and the computation time, number of (full-scale) measurement operator evaluations (m ops), and peak signal-to-noise ratio (PSNR) of the reconstructions.
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