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Interferometric Imaging



Interferometric Measurements

The baselines measure the visibilities y(u, v) which correspond to a Fourier measurement of the

image:
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SPIDER

Segmented Planar Imaging Detector for Electro-optical Reconnaissance

B SPIDER is new interferometric optical imaging

device developed by UC Davis and Lockheed Martin.

B Lenslet array to measure multiple interferometric

baselines and photonic integrated circuits (PICs) for

miniaturization.

B Reduces weight, cost and power consumption of

optical telescopes.

Kendrick et al. 2013
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SPIDER

Challenges for SPIDER:

B Sparse sampling of Fourier measurements. (M = 4440)

B Aliasing because of sampling distribution.

B Real-time reconstruction.
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Radio Telescopes

SKA-mid – the SKA’s mid-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as they 
each comprise a large number of individual elements working together to form a single large 
telescope.

Compared to the JVLA, the current best 
similar instrument in the world:

5x 
more 

sensitive 

60x 
the survey 

speed

4x 
the 

resolution

Frequency range: 

350 MHz to 
15.4 GHz

with a goal of 24 GHz
Location:  
South Africa

Total 
collecting 

area: 
33,000m2

or 
126 

tennis 
courts

Maximum distance
between dishes:  

150km

197 dishes
(including 64 MeerKAT dishes)  

Data transfer rate: 

8.8 Terabits 
per second

SKA-mid

Image quality of  
SKA-mid (left) versus 
the best current facility 
operating in the same 
frequency range, the 
Jansky Very Large Array 
(JVLA) in the United 
States (right). SKA-mid’s 
resolution will be 4x 
better than JVLA.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory

Maximum distance
between stations:  

>65km

Compared to LOFAR Netherlands, the current 
best similar instrument in the world

8x 
more 

sensitive

135x 
 the survey 

speed

Frequency range: 

50 MHz to 
350 MHz

131,072
antennas spread between 

512 stations

Total 
collecting 

area: 

0.4km2

Location: Australia

25% 
better 

resolution

SKA-low – the SKA’s low-frequency instrument
The SKA Observatory (SKAO) is a next-generation radio astronomy facility that will revolutionise 
our understanding of the Universe. It will have a uniquely distributed character: one observatory 
operating two telescopes on three continents. The two telescopes, named SKA-low and SKA-mid, 
will be observing the Universe at different frequencies. They are also called interferometers as 
they each comprise a large number of individual elements working together to form a single 
large telescope.

Data transfer rate: 

7.2 Terabits 
per second

SKA-low

Image quality of  
SKA-low (left) versus 
the best current facility 
operating in the same 
frequency range, the LOw 
Frequency ARray (LOFAR), 
in the Netherlands (right).  
SKA-low‘s resolution will 
be similar to LOFAR.

www.skatelescope.org @SKAO SKA Observatory @skaobservatorySKA ObservatorySKA Observatory
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Radio Telescopes

Challenges for Radio telescopes:

B Large amount of visibilities. (M � N)

B Visibility coverage depends on pointing, earth rotation,

etc.
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The Inverse Problem



Inverse Problem

We can write this particular problem as an inverse problem

y = Φ x + n ,

with

B y ∈ CM – Non-uniformly distributed Fourier measurements at (uj , vj) for j = 0, . . . ,M

B Φ : RN → CM – The forward operation of our measurement operator of the telescope

B x ∈ RN – The image to observe with N pixels

B n ∈ CM – Additive complex Gaussian noise
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Variational Regularisation

Variational regularisation: Find x? that satisfies

x? = arg min
x∈RN

L(Φx , y) + λR(x),

which we would typically solve in astronomical interferometry problems as

x? = arg min
x∈RN

||Φx − y ||22 + λ||Ψ†x ||1,

where Φ models the measurement operator and Ψ is typically a dictionary of wavelet bases.
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Learned Image Reconstruction



Learned Image Reconstruction

Using deep learning to solve the inverse problem:

B Data-driven priors

B Higher reconstruction quality

B Better computational efficiency
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Learned Reconstruction Approaches

Learned solvers are approaches where the parameters θ are Learned from training data.

Learned regularisation: Learn a regulariser Rθ and solve

x? = arg min
x∈RN

L(Φx , y) + λRθ(x)

Learned Sequential models: Learn a sequential Pseudo-inverse Φ†θ such that

x? = Φ†θy , Φ†θ = Bθ ◦Φ† ◦ Cθ

Learned Unrolled Iterative Algorithms: Learn how to iteratively update the reconstruction

xi+1 = Λθ(xi ,∇L(Φxi , y)), for i in (0, . . . , N)
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Learned Post-processing

Neural NetworkMeasurements

U-Net

Dirty Image Reconstruction
Telescope

Model 
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Learned Post-processing Network (U-Net)

1 16 16 16

16 32 32

32 64 64

64 128 128

 6464, 64 64

3232, 3232

16 16 116,16

Conv2D (3x3) + ReLU + BN

Conv2D (1x1)

MaxPool (2x2)

ConvTranspose2D (3x3) + ReLU + BN

Concatenate

U-Net

B Input: Dirty image

B Multi-resolution

denoising
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Learned Unrolled Iterative approach

Measurements

Neural
Network

GU-Net

Dirty Image

Reconstruction

Neural NetworkTelescope
Model 

Telescope
Model 

Matthijs Mars 13

www.matthijsmars.com


GU-Net Architecture

1, 16 16 16

16 32 32

32 64 64

64 128 128

64 64

3232

16 16 116,16,16

16

32

64

64,64,64

32,32,32

16
GU-Net

Conv2D (3x3) + ReLU + BN

Conv2D (1x1)

MaxPool (2x2)

ConvTranspose2D (3x3) + ReLU + BN

Concatenate

Adding in the gradient of

the data fidelity term to the

U-Net structure.

For `2-loss:

L = ||Φx − y ||2`2 ,

we calculate the gradient as

follows:

∇L(Φx , y) ∝ Φ†(Φx − y)
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Learned Unrolled Iterative approach

On each scale of the U-Net structure, we apply a subsampling of the measurement operator to

use for the gradient of the data fidelity term.

Scale 0 Scale 1
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Reconstruction for SPIDER



Reconstructed SPIDER images

True PseudoInverse
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U-Net
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B Imaging time speed-up of 50-600× relative to classical approaches.

B Dramatic reduction in computational time opens up real time imaging with SPIDER for

the first time.
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Computational Efficiency

Name Operator evaluations Average reconstruction time (ms) Training time (mins)

Pseudo-inverse (1 GPU) 1 5.50 -

U-Net (1 GPU) 1 10.7 ∼30

GU-Net (1 GPU) 11∗ 42.1 ∼100

Primal-Dual (300its, 1 CPU) 600 4.7× 104 -
∗Refers to operator evaluation at the finest scale, which dominates

the computational time of the GU-Net.

B Imaging time speed-up of 50-600× relative to classical approaches.

B Dramatic reduction in computational time opens up real time imaging with SPIDER for

the first time.
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Reconstruction for Radio telescopes



Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

B True coverage (oracle):

Actual visibility coverage, full retraining required for every observation.

B Single coverage:

Different visibility coverage, no retraining required for every observation.

B Distribution of coverages:

Distribution of visibility coverages, no retraining required for every observation.

B Transfer Learning:

Fine-tuning through transfer learning using the true coverage, small amount of

retraining.

B Single coverage transfer

B Distribution of coverages transfer
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Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

B True coverage

B Single coverage

B Single coverage transfer

B Distribution of coverages

B Distribution of coverages transfer
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Distribution of radio interferometric reconstruction quality
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Reconstruction quality (PSNR ↑) for different training strategies.

B Superior reconstruction quality by integrating physical model of instrument and more

robust to measurement operator variability.

B Imaging time speed-up of 50-600× relative to classical approaches.
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Distribution of radio interferometric reconstruction quality
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Reconstructed radio interferometric images
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Reconstructed radio interferometric images
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B Full end-to-end learning for radio interferometric imaging with support for varying

measurement operators for the first time.
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Conclusion



Conclusion

B Imaging time speed-up of 50-600× relative to classical approaches.

B Superior reconstruction quality by integrating physical model of instrument

B Full end-to-end learning for radio interferometric imaging with support for varying

measurement operators for the first time.

Papers:

Mars et al. 2023, ”Learned Interferometric Imaging for the SPIDER Instrument”,

arXiv:2301.10260

Mars et al. (in prep.), ”Learned radio interferometric imaging for varying visibility

coverages”
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