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Interferometric Imaging



Interferometric Measurements

The baselines measure the visibilities y(u, v) which correspond to a Fourier measurement of the

image:
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Credit: NRAO
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Segmented Planar Imaging Detector for Electro-optical Reconnaissance

> SPIDER is new interferometric optical imaging
device developed by UC Davis and Lockheed Martin.

>> Lenslet array to measure multiple interferometric
baselines and photonic integrated circuits (PICs) for

miniaturization.

> Reduces weight, cost and power consumption of

optical telescopes.
Kendrick et al. 2013
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Challenges for SPIDER:

> Sparse sampling of Fourier measurements. (M = 4440)
> Aliasing because of sampling distribution.

> Real-time reconstruction.
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Radio Telescopes

SKA-low - the SKA's low-frequency instrument

350 MHz. | _ < 50 MHz
15.4GHz | 19 2 ¥ 350 MHz

Total
collecting
e
o 0.4km?
126
tennis
courts

Data transfer rate:

7.2 Terabits
per second
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Radio Telescopes

Challenges for Radio telescopes:

> Large amount of visibilities. (M > N)

>> Visibility coverage depends on pointing, earth rotation,
etc.
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The Inverse Problem



Inverse Problem

We can write this particular problem as an inverse problem

P-EE-E
with

> | y € C | - Non-uniformly distributed Fourier measurements at (uj,vj) for j=0,....M

b

> | @ : RN — CM |- The forward operation of our measurement operator of the telescope
> | x € RN | - The image to observe with N pixels

> | me CM | - Additive complex Gaussian noise
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Variational Regularisation

Variational regularisation: Find x* that satisfies

x* =arg min L(®x,y) + A\R(x),
x€RN
which we would typically solve in astronomical interferometry problems as
x* = arg min ||@x — yl[5 + A|[€"x]]1,
x€RN

where ® models the measurement operator and W is typically a dictionary of wavelet bases.
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Learned Image Reconstruction




Learned Image Reconstruction

Using deep learning to solve the inverse problem:

>> Data-driven priors
>> Higher reconstruction quality

> Better computational efficiency
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Learned Reconstruction Approaches

Learned solvers are approaches where the parameters 6 are Learned from training data.

Learned regularisation: Learn a regulariser and solve

x* =arg min L(®x,y) +| \Ro(x)
x€RN
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Learned Reconstruction Approaches

Learned solvers are approaches where the parameters 6 are Learned from training data.

Learned regularisation: Learn a regulariser and solve
x* =arg min L(®x,y) +| \Ro(x)
x€RN

Learned Sequential models: Learn a sequential Pseudo-inverse such that

x*=dly, ‘@Z:BQOQTOCQ
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Learned Reconstruction Approaches

Learned solvers are approaches where the parameters 6 are Learned from training data.

Learned regularisation: Learn a regulariser and solve

x* =arg min L(®x,y) +| \Ro(x)
x€RN

Learned Sequential models: Learn a sequential Pseudo-inverse such that

x* =)y, ‘@ZngO@ToCQ

Learned Unrolled Iterative Algorithms: Learn how to iteratively update the reconstruction

Xi+1 = Ag(X,', V£(<I>x,-,y))7 for i in (0, oo o0g N)
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Learned Post-processing

Telescope
Measurements Model Dirty Image Neural Network Reconstruction

e
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Learned Post-processing Network (U-Net)

1 16 16 16 16,16 16 16 1

16 32 32 32,32 32 |32

> Input: Dirty image

> Multi-resolution
32 64 64 64,64 64 |64

denoising

—> Conv2D (3x3) + ReLU + BN

—> Conv2D (1x1)

MaxPool (2x2)

—> ConvTranspose2D (3x3) + ReLU + BN

~——> Concatenate
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Learned Unrolled lterative approach

4 Telescope \

Measurements Model

Reconstruction

(@

Telescope Dirty Image Neural Network
Model
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GU-Net Architecture

1,16 16 16 16

16,16,16 1616 1

16

16 32 32

32,32,32 32 |32

32 32 64 64 64,64,64
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—> Conv2D (3x3) + ReLU + BN

—> Conv2D (1x1)

MaxPool (2x2)

—> ConvTranspose2D (3x3) + ReLU + BN

~—» Concatenate

ConvaD (3:3) [z7, Vi L(@:27, 1),
Vi L(®izi, yi), B;yi)]

Adding in the gradient of
the data fidelity term to the
U-Net structure.

For />-loss:

L =[x -yl

we calculate the gradient as
follows:

VL(®x,y) x T (®x —y)

14
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Learned Unrolled lterative approach

On each scale of the U-Net structure, we apply a subsampling of the measurement operator to
use for the gradient of the data fidelity term.

Scale 0 Scale 1
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Reconstruction for SPIDER




Reconstructed SPIDER images

True Pseudolnverse Primal-Dual U-Net GU-Net
(PSNR: 10.5048) (PSNR: 24.83d8) (PSNR: 25.77dB) (PSNR: 26.6008)

(PSNR: 22.20d8) (PSNR: 23.4848) (PSNR: 25.04d8)

> Imaging time speed-up of 50-600x relative to classical approaches.

> Dramatic reduction in computational time opens up real time imaging with SPIDER for
the first time.
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Computational Efficiency

Name Operator evaluations ~ Average reconstruction time (ms)  Training time (mins)
Pseudo-inverse (1 GPU) 1 5.50 -

U-Net (1 GPU) 1 10.7 ~30
GU-Net (1 GPU) 11* 421 ~100
Primal-Dual (300its, 1 CPU) 600 47 x 104 -

“Refers to operator evaluation at the finest scale, which dominates
the computational time of the GU-Net.

> Imaging time relative to classical approaches.

> Dramatic reduction in computational time opens up with SPIDER for

the first time.
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Reconstruction for Radio telescopes




Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

> True coverage (oracle):
Actual visibility coverage, required for every observation.
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Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

> True coverage (oracle):
Actual visibility coverage, required for every observation.

>> Single coverage:
Different visibility coverage, required for every observation.
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Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

> True coverage (oracle):

Actual visibility coverage, required for every observation.
>> Single coverage:

Different visibility coverage, required for every observation.
>> Distribution of coverages:

Distribution of visibility coverages, required for every observation.
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llenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:

> True coverage (oracle):
Actual visibility coverage, required for every observation.
>> Single coverage:
Different visibility coverage, required for every observation.
>> Distribution of coverages:
Distribution of visibility coverages, required for every observation.
>> Transfer Learning:
Fine-tuning through transfer learning using the true coverage,

> Single coverage transfer
> Distribution of coverages transfer
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Challenge in Radio Interferometry

Challenge: The visibility coverage is different for every observation

We compare:
True coverage

Single coverage

>

>

> Single coverage transfer

> Distribution of coverages
>

Distribution of coverages transfer
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Distribution of radio interferometric reconstruction quality

U-Net
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True Single Single Distribution  Distribution
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Transfer Transfer

Reconstruction quality (PSNR 1) for different training strategies.
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Distribution of radio interferometric reconstruction quality

U-Net GU-Net
60 N N
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True Single Single Distribution  Distribution True Single Single Distribution  Distribution
coverage coverage coverage of coverages of coverages coverage coverage coverage of coverages of coverages
Transfer Transfer transfer transfer
Reconstruction quality (PSNR 1) for different training strategies.
> by integrating physical model of instrument and
to measurement operator variability.
> Imaging time relative to classical approaches.
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Reconstructed radio interferometric images

Random coverage Transfer
(PSNR: 35.07dB)

Random coverage
(PSNR: 33.82B)

Single coverage Transfer
(PSNR: 38.77dB)

Single coverage
(PSNR: 25.67B)

Dirty image True coverage
(PSNR: 16.440B) (PSNR: 40.290B)

Reference

™ ™ ' Y

U-Net

Single coverage transfer
(PSNR: 55.38B)

Distribution of coverages transfer
I( )

single coverage
PSNR: 55.324B)

(PSNR: 55.28B)

True coverage

Distribution of coverages
(PSNR 16.448) (PSNR: 57.29dB) )

(PSNR: 50.260B)

Reference
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Reconstructed radio interferometric images

True Dirty Image True coverage
(PSNR: 31.65dB) (PSNR: 47.93dB)

single coverage
(PSNR: 46.634B)

Distribution of coverages
(PSNR: 44.86B)

single coverage transfer
(PSNR: 47.87dB)

Distribution of coverages transfer
(PSNR: 45.31dB)

> Full end-to-end learning for radio interferometric imaging with support for varying

measurement operators for the first time.
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Conclusion




Conclusion

> Imaging time relative to classical approaches.
> by integrating physical model of instrument
> for radio interferometric imaging with support for

for the first time.

Papers:
Mars et al. 2023, " Learned Interferometric Imaging for the SPIDER Instrument”,

arXiv:2301.10260
Mars et al. (in prep.), "Learned radio interferometric imaging for varying visibility

coverages”
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